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Special phase matching of second-harmonic generation in helical ferroelectric liquid crystal cells
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The helical structures in ferroelectric liquid crystals can be utilized to realize a special phase matching for
second-harmonic generation~SHG! when two counter fundamental waves propagate along the helical axis and
the wavelength of SHG is near the photonic~selective reflection! band edge. On the basis of the exact theory
@Drevensek-Olenik and Copic, Phys. Rev. E56, 581 ~1997!#, a simple analytical description is derived and
some characteristic features of the special phase matching are shown.~1! Special phase matching is definitely
achieved under particular combinations of polarization.~2! The SH spectrum is related to a subsidiary oscil-
lating structure in the selective reflection spectrum. The maximum SH intensity is realized at the first dip of the
oscillation near one of the edges in the selective reflection band.~3! The thickness~d! dependence of the
maximum SH intensity isd4 in thick cells, while it isd2 for conventional phase matching.~4! The linewidth
for the SH peak isd23 dependent, which is much narrower than in conventional phase matching.

DOI: 10.1103/PhysRevE.63.056610 PACS number~s!: 42.65.Ky, 42.70.Qs, 42.70.Df, 77.84.Nh
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I. INTRODUCTION

Considerable attention has been paid to periodic dielec
media since the idea of the photonic band gap was discu
@1#. Phenomena occurring in photonic crystals are attrac
from the viewpoints of both basic physics and device ap
cations. The interest has been mostly devoted to two-
three-dimensional systems. This is partly because the aim
investigations of the photonic effect at first was to confi
light in photonic crystals. However, the characteristic eff
occurs not only in the photonic gap but also near the g
where abnormal light propagation occurs because of str
dispersion of light. In this respect, one-dimensional photo
crystals also provide us with interesting phenomena, if li
propagation, which is strongly influenced by the on
dimensional dielectric periodicity, is dealt with. One of the
optical phenomena is optical harmonic generation. Beca
of the coherence of light, generated higher harmonic wa
propagate along a certain direction, so that one can tune
direction of light propagation to obtain a strong influence
the photonic effect. Scaloraet al. @2# and Hauset al. @3#
theoretically studied the enhanced second-harmonic gen
tion ~SHG! in one-dimensional periodic structures.

We should emphasize here that some kinds of liquid cr
tal ~LC! spontaneously form periodic~helical! structures,
which provide more possibilities of realizing phase match
conditions than do homogeneous materials. Therefore,
themselves serve as ideal one-dimensional systems for s
ing the photonic effect. The difference that should be bo
in mind is the variation in dielectric constants, namely, t
dielectric constant varies sinusoidally along the helical a
leading to~1! only one photonic gap without higher orde
ones,~2! optical eigenmodes with nearly circularly polarize
light, and~3! a relatively wide gap due to the large dielectr
anisotropy. The characteristic~1! is true only for light propa-
gating along the helical axis and higher order stop ba
appear for obliquely propagating waves.

Shelton and Shen showed many phase matchings
third-harmonic generation in cholesteric LCs@4–6#. For
SHG, an additional phase matching,specialphase matching
1063-651X/2001/63~5!/056610~16!/$20.00 63 0566
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is possible under relatively general conditions without us
color dispersion@7,8#. In the smectic-C* (Sm-C* ) phase of
ferroelectric LCs, this special phase matching is poss
when two counterwaves propagate along the helical axis
the wavelength of SHG is near the selective reflection e
@9,10#. Although different conditions such as oblique inc
dence have been considered theoretically recently@11#, only
the above condition is dealt with in the present paper beca
of its simplicity. Special phase matching is superior to t
conventional one in its thickness~d! dependence. The SH
intensity is d4 dependent for the special phase matchin
while it is d2 dependent for the conventional one. Because
this merit, special phase matching has received much at
tion.

Enhanced SHG under such conditions was observed
Kajikawa et al. @12# and by Furukawaet al. @13# using the
Sm-C* phases of MHPOOCBC and ROLIC6304, respe
tively. To explain these results, Copic and Drevensek-Ole
presented an analytical theory for the special phase matc
in Sm-C* phases and suggested that two counterwa
would be preferable to the unidirectional wave used in th
experiments@9#. Yoo et al. confirmed the theoretical predic
tions using two counterwaves@10#. Recently, Drevensek
Olenik and Copic developed an exact theory, which co
putes the exact electromagnetic fields via a numer
method under the assumption that the power depletion of
fundamental waves is neglected@14#. This theory is consis-
tent with recent polarization and thickness dependence
periments@15–17#. Although accurate results are obtaine
by the exact theory, it is difficult to grasp its general featu
because of the complicated numerical procedure. For
ample, the thickness dependence, which is expected to
special, has not been quantitatively analyzed. To help in
derstanding, the electric fields in LCs were visualized in
previous paper and some features were noted@18#. In the
present paper, a simple analysis is developed based on
exact theory. The effect of polarization is explicitly consi
ered, which is rather undetermined in the previous analyt
method by Copic and Drevensek-Olenik@9#. The phase
matching conditions are definitely determined. Unus
©2001 The American Physical Society10-1
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thickness dependence and linewidth properties are also
cussed.

II. EXACT THEORY

Analytical expressions are derived based on the ex
theory @14#. To define the notations, the exact theory
briefly reviewed in this section. In this model, three~left,
middle, right! layers are considered. The left and right laye
are isotropic substrates~dielectric constants« l and« r at the
fundamental frequencyv and«L and«R at 2v, respectively!.
The middle layer~thicknessd! consists of a Sm-C* structure
with local C2 symmetry, the axis of which forms a helica
structure~pitch p! with the helical axis normal to the sub
strate surface. Local Cartesian coordinates (e1 ,e2 ,e3) are
introduced, where thee2 ande3 axes are parallel to theC2
axis and the major principal axis of the dielectric const
~molecular long axis!, respectively. In these coordinates, t
nonzero components of the dielectric constant and the n
linear optical susceptibility are«11, «22, and«33 ~or simply
«1 , «2 , and«3) at v, «̃11, «̃22, and«̃33 ~or «̃1 , «̃2 , and«̃3)
at 2v, and x123, x112, x332, and x222, where Kleinman’s
symmetry is assumed forx (2). The tilt angleu is the angle
between thee3 axis and the helical axis. In this analysi
depletion of the fundamental waves is neglected and o
normally incident fundamental waves are treated. Labora
coordinatesxyz (ex ,ey ,ez), are related to the local coord
nates by

S ex

ey

ez

D 5RS e1

e2

e3

D 5S cosu cosqz 2sinqz sinu cosqz

cosu sinqz cosqz sinu sinqz

2sinu 0 cosu
D

3S e1

e2

e3

D ,
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wherez is the helical axis andq52p/p, which is positive
~negative! for a right- ~left!-handed helix.

A. Propagation of fundamental waves: Homogeneous waves

The fundamental waves are described by the wave eq
tion in a nonmagnetic system@14,19,20#

“3“3E1
«

c2

]2E

]t2 50.

For plane waves propagating along thez axis, the wave equa
tion in xyzcoordinates is

~2]z
2I i j

0 2k0
2« i j8 !Ej850, I 0[S 1 0 0

0 1 0

0 0 0
D , ~1!

where time factore2 ivt of the electric field is eliminated
k05v/c, and« i j8 andEj8 are the components inxyzcoordi-
nates. This equation is known to have a de Vries type so
tion @21,22# and is simplified using unitary transformed c
ordinates (ea ,eb ,ez), where

S ea

eb

ez

D 5WS ex

ey

ez

D 5
1

A2 S 2e2 iqz 2 ie2 iqz 0

eiqz 2 ieiqz 0

0 0 A2
D S ex

ey

ez

D .

~2!

As discussed in Appendix A, the general homogeneous
lutions are linear combinations of four waves. Inabzcoordi-
nates, they are given by
S Ea

Eb

Ez

D 5S f 1eik1z f 2eik2z f 3eik3z f 4eik4z

eik1z eik2z eik3z eik4z

~12 f 1!eik1z«az /«zz ~12 f 2!eik2z«az /«zz ~12 f 3!eik3z«az /«zz ~12 f 4!eik4z«az /«zz

D a, ~3!

a[t~a1a2a3a4!,
where

kt56~q21 lk0
26A4lk0

2q21m2k0
4!1/2, ~4!

f t5
Ea

Eb
5

~kt2q!22 lk0
2

mk0
2 , ~5!
l[$«11«21~«32«1!«1 sin2 u/~«1 sin2 u1«3 cos2 u!%/2,

m[2 l 1«2 . ~6!

«az and«zz are given in Appendix A, andt ~51–4! specifies
four modes defined by choosing two6 signs in Eq.~4!. In
xyzcoordinates,Ex , Ey , Hx , andHy components are given
by
0-2
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S Ex

Ey

Hx

Hy

D 5(
t51

4
at

& S 2 f te
i ~kt1q!z1ei ~kt2q!z

i $ f te
i ~kt1q!z1ei ~kt2q!z%

2
i

k0
$ f t~kt1q!ei ~kt1q!z1~kt2q!ei ~kt2q!z%

1

k0
$2 f t~kt1q!ei ~kt1q!z1~kt2q!ei ~kt2q!z%

D [P~z!a. ~7!
i-

lef

i-

ion

fol-
B. The boundary conditions for fundamental waves

The coefficientsa are determined by the boundary cond
tions. LetElx

0 andEly
0 (Erx

0 andEry
0 ) be thex andy compo-

nents of the electric field amplitude that is incident on the
~right! side of the cell. Similarly, letFlx

0 and Fly
0 (Frx

0 and
Fry

0 ) be thex and y components of the electric field ampl
tude that emanates from the left~right! side. Ex , Ey , Hx ,
andHy components for the waves incident~I! and emanating
~F! from the left and right sides are given by

I l5S Elx
0

Ely
0

2A« lEly
0

A« lElx
0

D , I r5S Erx
0

Ery
0

A« rEry
0

2A« rErx
0

D ,

Fl5S Flx
0

Fly
0

A« lFly
0

2A« lFlx
0

D , Fr5S Frx
0

Fry
0

2A« rFry
0

A« rFrx
0

D . ~8!

The boundary conditions are expressed as

I l1Fl5P~0!a.

I r1Fr5P~d!a.

Using the relations

Fl5SlF, Fr5SrF,

whereF, Sl , andSr are defined as

F[S Flx
0

Fly
0

Frx
0

Fry
0
D , Sl[S 1 0 0 0

0 1 0 0

0 A« l 0 0

2A« l 0 0 0

D ,
05661
t
Sr[S 0 0 1 0

0 0 0 1

0 0 0 2A« r

0 0 A« r 0

D , ~9!

the boundary conditions are expressed in 838 matrix form
as

S P(d) 2Sr

P(0) 2Sl
D S a

F D5S I r

I l
D . ~10!

For exact numerical calculations, the Gauss eliminat
method was applied.

C. Propagation of SH waves: Inhomogeneous
and homogeneous waves

The SH waves produced by nonlinear polarizationP are
described by

“3“3E1
«̃

c2

]2E

]t2
52

4p

c2

]2P

]t2
. ~11!

The particular or inhomogeneous solution is obtained as
lows ~see Appendix B!. In abzcoordinates,P has the form

S Pa

Pb

Pz

D 5 (
i , j 51

4 S Pai j
0

Pbi j
0

Pzi j
0
D eiki j z, ki j [ki1kj , ~12!

and the inhomogeneous solution is given by

S Ea

Eb

Ez

D 5(
i j

S Eai j
0

Ebi j
0

Ezi j
0
D eiki j z, ~13!

where
0-3
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S Eai j
0

Ebi j
0

Ezi j
0
D 5

24p

D

3S L2
~ki j 2q!2

K0
2 2M

«̃az

«̃zz
H 2 «̃21

~ki j 2q!2

K0
2 J

2M L2
~ki j 1q!2

K0
2

«̃az

«̃zz
H «̃22

~ki j 1q!2

K0
2 J

«̃az

«̃zz
H 2 «̃21

~ki j 2q!2

K0
2 J «̃az

«̃zz
H «̃22

~ki j 1q!2

K0
2 J «̃2$«̃11 «̃31~ «̃12 «̃3!cos 2u%

2«̃zz
2

2«̃aa~ki j
2 1q2!

«̃zzK0
2 1

~ki j
2 2q2!2

«̃zzK0
4

D
3S Pai j

0

Pbi j
0

Pzi j
0
D , ~14!

D5L22M22
2L

K0
2 ~ki j

2 1q2!1
~ki j

2 2q2!2

K0
4 5~ki j 2K1!~ki j 2K2!~ki j 2K3!~ki j 2K4!/K0

4, ~15!

K052v/c, and «̃ab , L, M, and Kt are defined by Eqs.~A3!, ~6!, and ~4! using the dielectric constants at 2v. In xyz
coordinates,Ex , Ey , Hx , andHy components for the inhomogeneous waves are given by

S Ex

Ey

Hx

Hy

D 5
1

&
(
i j S 2Eai j

0 ei ~ki j 1q!z1Ebi j
0 ei ~ki j 2q!z

i $Eai j
0 ei ~ki j 1q!z1Ebi j

0 ei ~ki j 2q!z%

2
i

K0
$Eai j

0 ~ki j 1q!ei ~ki j 1q!z1Ebi j
0 ~ki j 2q!ei ~ki j 2q!z%

1

K0
$2Eai j

0 ~ki j 1q!ei ~ki j 1q!z1Ebi j
0 ~ki j 2q!ei ~ki j 2q!z%

D [up~z!, ~16!

where the subscriptp stands for particular~or inhomogeneous! solution.
On the other hand,Ex , Ey , Hx , andHy components for the homogeneous waves are given by the same form as E~7!:

S Ex

Ey

Hx

Hy

D 5(
t51

4
At

& S 2Fte
i ~Kt1q!z1ei ~Kt2q!z

i $Fte
i ~Kt1q!z1ei ~Kt2q!z%

2
i

K0
$Ft~Kt1q!ei ~Kt1q!z1~Kt2q!ei ~Kt2q!z%

1

K0
$2Ft~Kt1q!ei ~Kt1q!z1~Kt2q!ei ~Kt2q!z%

D [P~z!A, ~17!
s

e

whereFt is defined by Eq.~5! using the dielectric constant
at 2v.

D. The boundary conditions for SH waves

The waves emanating from the cell andA are determined
by the boundary conditions. LetFLx

0 andFLy
0 (FRx

0 andFRy
0 )

be thex andy components of the SH electric field amplitud
that emanates from the left~right! side. Ex , Ey , Hx , and
Hy components for these waves are given by

FL5S FLx
0

FLy
0

A«LFLy
0

2A«LFLx
0

D , FR5S FRx
0

FRy
0

2A«RFRy
0

A«RFRx
0

D . ~18!
05661
The boundary conditions are

FL5up~0!1P~0!A.
~19!

FR5up~d!1P~d!A.

Using the definitions

F[5S FLx
0

FLy
0

FRx
0

FRy
0
D , SL[S 1 0 0 0

0 1 0 0

0 A«L 0 0

2A«L 0 0 0

D ,
0-4
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SR[S 0 0 1 0

0 0 0 1

0 0 0 2A«R

0 0 A«R 0

D , ~20!

the boundary conditions are expressed in 838 matrix form
as

S P~d! 2SR

P~0! -SL
D S A

FD5S 2up~d!

2up~0! D , ~21!

and solved by the Gauss elimination method.

III. ANALYSIS AND DISCUSSION

The special phase matching is analyzed based on the
act theory. In previous papers, the exact theory was foun
be consistent with experimental results@15–17#. However,
the general features have not been described yet. Most o
experiments were performed using a Nd:YAG~yttrium alu-
minum garnet! laser as the fundamental wave~wavelength
1.064 mm! and ROLIC6304@10,13,15–17#. In the present
paper, the numerical results are obtained under these co
tions. The molecules form a right-handed helix whose axi
normal to the glass substrate. The dielectric constants
ROLIC6304 and glass are«15 «̃15«25 «̃252.2, «35 «̃3
52.8,«15«L5« r5«R52.25@17,23#. The tilt angleu is 23°
@17,23#. x (2) components arex123:x112:x332:x22250.34:
21.12:22.76:3.34, determined by standard angle ph
matching using the unwound sample under an electric fi
@23#. In the previous experiments, the pitch was tuned by
temperature. Special phase matching was actually obse
when the selective reflection band was located near 0.
mm @10,13,15–17#.

A. Dispersion relations and homogeneous wave modes

First let us consider the homogeneous waves@Eqs.~7! and
~17!# in LCs, which are responsible for the linear optic
properties@19,20#. We use Eq.~17!, namely,« at 2v, be-
cause the results are applied to SH waves in the follow
section. Figure 1 shows the dispersion curves@9,14# using
p50.358 761 84mm (q517.513 527 radmm21), where the
four modes ofK are defined as follows:

FIG. 1. Dispersion curves for propagation along the helical a
in Sm-C* . Four modes are defined by Eq.~22!.
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K151~q21LK0
21A4LK0

2q21M2K0
4!1/2,

K251~q21LK0
22A4LK0

2q21M2K0
4!1/2, ~22!

K352K1 ,

K452K2 .

K2 and K4 are imaginary whenK0 is between K02

[q/AL1M and K013[q/AL2M , namely, the wavelength
in vacuo, l0(2v), is between l2[AL1Mp and l13

[AL2Mp, which correspond to the edges of the photon
gap in Fig. 1. Using the relations

L1M5 «̃2 , L2M5 «̃e[«̃1«̃3 /~ «̃1 sin2 u1 «̃3 cos2 u!,

~23!

the l2 (K02) edge is determined by«̃2 and thel13 (K013)
edge is determined by«̃1 , «̃3 , andu. For ROLIC6304,K02 is
higher thanK013 because of the negativeM. In previous pa-
pers,L[«̃ is defined as the average value of the dielec
tensor, whereas2M[a is defined as the dielectric aniso
ropy in the plane of the smectic layer@9,14#. These defini-
tions are obvious in the following form:

L5~ «̃21 «̃e!/2, M5~ «̃22 «̃e!/2. ~24!

L and uMu are important factors for determining the locatio
and the width of the gap, respectively. Actually we note th
ul22l13u is proportional to the optical anisotropy of th
refractive index in the plane of the smectic laye
uA«̃22A«̃eu.

To characterize the modes, we concentrate on the foll
ing part of the homogeneous wave:

S Ex

Ey
D5(

t51

4
At

&
H S 2Fte

i ~Kt1q!z

iF te
i ~Kt1q!z D1S ei ~Kt2q!z

iei ~Kt2q!zD J . ~25!

The first and second terms express eitherl or r components.
The signs ofKt1q andKt2q define the propagation direc
tions of the first and second terms, respectively. Positive
negative values ofKt1q correspond to propagation ofr po-
larization toward the1z direction, (1z,r ), and propagation
of l polarization toward the2z direction, (2z,l ), respec-
tively. Those ofKt2q correspond to (1z,l ), and (2z,r ),
respectively. The ratio of the first and second terms isFt:1
and uF1u and uF2u are shown in Fig. 2. Using Eqs.~A7! and
~5!, F3 andF4 are related toF1 andF2 by

F1F35F2F451. ~26!

Using Eq. ~25! and Figs. 1 and 2, four modes can b
characterized. For mode 1,uF1u!1 as shown in Fig. 2,
which indicates that the second term is dominant. Moreov
K12q is positive as shown in Fig. 1. Thus, mode 1 is dom
nated by (1z,l ). Similarly, mode 3 is dominated by
(2z,l ).

s
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Modes 2 and 4 are considered separately for the th
region ~I! inside the gap,~II ! far from the gap, and~III !
outside the gap and close to the edge.

In region I marked by the arrows in Fig. 2,K2 andK4 are
purely imaginary,

K25 is, K452 is, ~27!

wheres is a real function. Modes 2 and 4 are exponentia
growing and decreasing waves. So the selective reflec
occurs when a wave whose helicity is the same as that o
helix is incident. Since the complex conjugate ofF2 , F̄2 ,
satisfies the relation,F̄25F451/F2 , F2 and F4 are ex-
pressed as

F25eif, F45e2 if, ~28!

where f is a real function. In particular,uF2u51 in this
region as shown in Fig. 2.

In region II, uF2u!1 is satisfied below the gap, anduF2u
@1 is satisfied above the gap, which indicates that mode
and 4 are dominated by ther polarized wave. For mode 2
(2z,r ) is dominant below the gap and (1z,r ) is dominant
above the gap. For mode 4,(1z,r ) is dominant below the
gap and (2z,r ) is dominant above the gap.

In region III, the simple interpretation for region II is no
applicable sinceuF2u is close to 1 and two terms in Eq.~25!
should be considered. Near the edges, both modes 2 a
are linear combinations of (1z,r ) and (2z,r ). In particular,
at thel2 edge,F251, and Eq.~17! is expressed as

FIG. 2. ~a! uF1u and~b! uF2u versusK0 using Eq.~5!. The inset
shows the region near the photonic band gap. The arrows ind
the edges of the band.
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A2P~z!25S Ex

Ey

Hx

Hy

D 5&S 2 isinqz
i cosqz

~q sinqz!/K0

2~q cosqz!/K0

D A2 , ~29!

Ez5Hz50, which is a standing wave in right-handed helic
form whose electric and magnetic fields are always para
to the C2 axis. On the other hand, at thel13 edge,F25
21, and Eq.~17! is expressed as

A2P~z!25&S cosqz
sinqz

~ iq cosqz!/K0

~ iq sinqz!/K0

D A2 , ~30!

Ez52A2«̃az / «̃zz, Hz50, which is a standing wave in right
handed helical form whose electric and magnetic fields
always normal to theC2 axis. In other words, this wave i
orthogonal to the wave at thel2 edge.

B. Second-harmonic generation

1. Phase matching conditions

Let us consider SHG properties. Enhanced SHG is
pected when the amplitudes of the inhomogeneous waves
large. According to Eq.~15!, this situation occurs unde
phase matching conditions, namely,

ki j [ki1kj5Kt . ~31!

Under the condition that the SH frequency is located near
photonic band gap, possible conditionsA–E are illustrated
in Fig. 3 using the diagrams of Drevensek-Olenik and Co
@14#. It is clear that no color dispersion is necessary a
umklapp processes are involved.

Phase matchingA occurs whenk12[k11k25K1 . To re-
alize this phase matching, two counter fundamental wav
one with (1z,l ) and the other with (2z,r ), (1z,l ;2z,r ),
are effective.

Phase matchingsB–E occur when K05K02 or K0
5K013. For phase matchingsB andD, counterwaves withr

te

FIG. 3. Possible phase matching conditions when SH freque
is located near the photonic band gap.
0-6
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SPECIAL PHASE MATCHING OF SECOND-HARMONIC . . . PHYSICAL REVIEW E 63 056610
polarization (1z,r ;2z,r ) are effective, while, forC andE,
counterwaves withl polarization (1z,l ;2z,l ), are effective.

2. Type-II-like phase matchingA

The condition for phase matchingA is k125K1 and the
effective fundamental waves are (1z,l ;2z,r ), whose polar-
izations differ from each other~type II like!. SHG under
such conditions is analyzed. Inabzcoordinates, the homoge
neous fundamental waves@Eq. ~3!# are dominated by

S Ea

Eb

Ez

D .S 0
a1eik1z1a2eik2z

~a1eik1z1a2eik2z!«az /«zz

D . ~32!

In abz coordinates, nonlinear polarizations with wave nu
bersk11, k22, andk12 dominate. In particular, near the pha
matching condition, the inhomogeneous waves@Eq. ~13!# are
dominated byk12. In the matrix elements in Eq.~14!, the 22
component is normally dominant for relatively smallM since
q2/K0

2 is aboutL andk12 is about 2q using the approxima-
tion thatK0 is aboutq/AL. In Eq. ~14!, if only the 22 com-
ponent is considered,

Eb12
0 .

24pK0
4

~k122K1!~k122K2!~k122K3!~k122K4!

3S L2
~k121q!2

K0
2 D Pb12

0 . ~33!

The amplitude is infinite under the phase matching condit
k125K1 . Using Eqs.~B2!–~B4! and ~32!,

Pb12
0 .H xbbb1xbzzS «az

«zz
D 2J 2a1a2 , ~34!

wherexbbb andxbzz are given in Appendix B. Inxyzcoor-
dinates, the inhomogeneous wave@Eq. ~16!# is expressed as

up~z!.
1

& S 1
i

2 i ~k122q!/K0

~k122q!/K0

D Eb12
0 ei ~k122q!z, ~35!

which is (1z,l ) according to the interpretation of Eq.~25!.
The boundary condition Eq.~21! determines the homoge
05661
-

n

neous and emanating SH waves. The right-hand side of
~21! is expressed as

2up~d!.2up~0!ei ~k122q!d, ~36!

2up~0!.
1

& S 21
2 i

i ~k122q!/K0

2~k122q!/K0

D Eb12
0 . ~37!

The left-hand side of Eq.~21! includes the homogeneou
waves. The homogeneous wave with (1z,l ) character is
mode 1. Under the approximation ofF1.0, mode 1 is ex-
pressed as

A1P~d!1.A1P~0!1ei ~K12q!d, ~38!

A1P~0!1.
1

& S 1
i

2 i ~K12q!/K0

~K12q!/K0

D A1 . ~39!

Near the phase matching condition, we introduce the follo
ing simple approximation:

A.S 2Eb12
0

0
0
0

D . ~40!

Equations~19!, ~37!, ~39!, and~40! lead to

S FLx
0

FLy
0 D .S 0

0D , ~41!

which shows that no SHG comes from the left side. On
other hand, Eqs.~36!–~40! lead to

S FRx
0

FRy
0 D .&Eb12

0 ei ~k121K122q!d/2 sin
~k122K1!d

2 S i
21D ,

~42!

which shows that the SH wave emanating from the right s
is of l polarization. The intensity is
I 5
cA«R

8p
$uFRx

0 u21uFRy
0 u2%.

cA«R

8p

64p2K0
8$L2~k121q!2/K0

2%2 sin2@~k122K1!d/2#uPb12
0 u2

~k122K1!2~k122K2!2~k122K3!2~k122K4!2

~43!

5
cA«R

8p
4 sin2

~k122K1!d

2
uEb12

0 u2[
cA«R

8p
GuEb12

0 u2.
0-7
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This is compared with the exact theory@Fig. 4~a!#, where the
fundamental waves are (1z,l ;2z,r ), p50.358 761 84mm,
d587mm, anduPb12

0 u is assumed to be constant in this r
gion. The approximation is shown to be good. Equation~43!
is factored into the form ofGuEb12

0 u2 and the spectra ofG and
uEb12

0 u2 are shown in Fig. 4~b!. G is oscillating. The maxi-
mum intensity is approximately obtained under the ph
matching condition, whereuEb12

0 u2 is infinite, whileG is zero.
In other words, infinite inhomogeneous waves (1z,l ) are
significantly canceled out by the homogeneous wa
(1z,l ). The cancellation is complete on the left side. On
right side,$sin2(k122K1)d/2%/(k122K1)2 in Eq. ~43! varies
as d2/4 under the phase matching condition. Thus, ph
matchingA is conventional in its thickness dependence.

3. Special kind of type-I-like phase matchings B– E

Now let us consider the phase matchingsB–E. Accord-
ing to Sec. III B 1, the possible phase matching conditio
are K05K02 or K05K013. First we concentrate on phas
matchingsB and D, where the fundamental waves (1z,r ;
2z,r ) are effective. Inabz coordinates, such fundament
waves are dominated by

S Ea

Eb

Ez

D .S a4f 4eik4z

a2eik2z

~a2eik2z2a4f 4eik4z!«az /«zz

D . ~44!

In abz coordinates, nonlinear polarizations with wave nu
bersk22, k44, and k2450 dominate. In particular, near th
phase matching conditions, the inhomogeneous waves

FIG. 4. ~a! Phase matchingA for (1z,l ;2z,r ) fundamental
waves. Dots, exact theory: curve, Eq.~43! whereuPb12

0 u is assumed
to be constant in this region.~b! uEb12

0 u2 andG as functions ofK0 .
05661
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expected to be dominated byk24 because of the smallD in
Eq. ~15!. Moreover,Ea24

0 andEb24
0 are dominant because o

large 11~522! and 12~521! components in Eq.~14!. In Eq.
~14!, if only these components are considered,

S Ea24
0

Eb24
0 D .

24p

D S L2q2/K0
2 2M

2M L2q2/K0
2D S Pa24

0

Pb24
0 D . ~45!

Using Eqs.~B2!–~B4! and ~44!,

Pa24
0 .Pb24

0 .2H xaaa2xabzS «az

«zz
D -xazzS «az

«zz
D 2J a2a4f 4 ,

~46!

and Eq.~45! is reduced to

Ea24
0 .Eb24

0 .
24p

D
~L2q2/K0

22M !Pa24
0

5
4p

q2/K0
22 «̃2

Pa24
0 . ~47!

At the l2 edge, Eq. ~47! is infinite since q2/K02
2 5 «̃2 ,

namely, enhanced SHG is expected for the phase matc
condition K05K02. On the other hand, the other conditio
K05K013 is not effective sinceq2/K013

2 5 «̃e . Thus, no en-
hanced SHG is expected near thel13 edge unless thel13 and
l2 edges are nearly degenerate. According to Eq.~16!, Ea24

0

andEb24
0 correspond to (1z,r ) and (2z,r ), respectively. In

xyzcoordinates, the inhomogeneous wave in Eq.~16! is ex-
pressed as

up~z!.&S 2 i sinqz
i cosqz

~q sinqz!/K0

2~q cosqz!/K0

D Ea24
0 . ~48!

This wave has the same form as the homogeneous wav
the l2 edge @Eq. ~29!#, namely, it is a standing wave o
right-handed helical form whose electric and magnetic fie
are always parallel to theC2 axis. On the other hand, th
inhomogeneous wave is orthogonal to the homogene
wave at thel13 edge@Eq. ~30!#.

Until now the phase matchingsB andD were considered.
Now let us consider the phase matchingsC andE, where the
fundamental waves (1z,l ;2z,l ) are effective. Inabzcoor-
dinates, such fundamental waves are dominated by

S Ea

Eb

Ez

D .S a3f 3eik3z

a1eik1z

~a1eik1z2a3f 3eik3z!«az /«zz

D . ~49!
0-8
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Following the previous discussion, the inhomogeneo
waves are dominated byEa13

0 and Eb13
0 with wave number

k1350 and they are expressed as

Ea13
0 .Eb13

0 .
24p

D
~L2q2/K0

22M !Pa13
0

5
4p

q2/K0
22 «̃2

Pa13
0 , ~50!

where

Pa13
0 .Pb13

0 .2H xaaa2xabzS «az

«zz
D2xazzS «az

«zz
D 2J a1a3f 3 .

~51!

In xyzcoordinates, the inhomogeneous wave is expresse

up~z!.&S 2 i sinqz
i cosqz

~q sinqz!/K0

2~q cosqz!/K0

D Ea13
0 . ~52!

Since Eqs.~50!, ~51!, and~52! are similar to Eqs.~47!, ~46!,
and ~48!, respectively, phase matchingsC and E occur in
similar ways to phase matchingsB andD, respectively. That
is, the phase matching is achieved irrespective of the po
ization of the fundamental waves, if both are the same~type
I like! and counterpropagating. The SH wave is enhan
near thel2 edge and isr polarized. These predictions wer
actually observed experimentally@15–17#, and will be dis-
cussed further in the following. To simplify the notations, w
proceed with the analysis only for (1z,r ;2z,r ).
05661
s
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4. Further details of the special phase matching

The homogeneous and emanating SH waves are d
mined by the boundary conditions. Since the inhomogene
waves arer polarized, the homogeneous waves are assum
to be dominated byr-polarized modes 2 and 4. For simplic
ity, we proceed with the analysis under the following con
tions:

«R5«L , ~53!

K0A«L.q, ~54!

K2.0. ~55!

Condition ~54! is equivalent toA«Lp.l0(2v), namely,«L
is close to the dielectric constants of LCs. Condition~55! is
satisfied when SHG occurs near the edges of the gap. U
these conditions, let us consider a homogeneous wave
the following form as an approximate solution:

A5S 0
A2

0
A2eiK 2d~F211!/~F411!

D . ~56!

Here (F211)/(F411) can be transformed to the followin
relations using Eq.~26!:

F211

F411
52

2F211

2F411
52

F2~K21q!1K22q

F4~K41q!1K42q

5
2F2~K21q!1K22q

2F4~K41q!1K42q
. ~57!

For Eq.~56!, the boundary conditions Eq.~19! are given by
S A2~2F211!~12eiK 2d!/&
A2i ~F211!~11eiK 2d!/&1& iEa24

0

2A2i $F2~K21q!1K22q%~12eiK 2d!/&K0

A2$2F2~K21q!1K22q%~11eiK 2d!/&K02&qEa24
0 /K0

D 5S FLx
0

FLy
0

A«LFLy
0

2A«LFLx
0

D , ~58!

P~d!A1up~d!5S 2FLy
0 2FLx

0

2FLx
0 FLy

0

A«LFLx
0 2A«LFLy

0

2A«LFLy
0 2A«LFLx

0

D S sinqd
cosqdD5S FRx

0

FRy
0

2A«RFRy
0

A«RFRx
0

D ~59!

~see Appendix C!. Using Eq.~53!, Eq. ~59! is simplified to

FRx
0 52cosqdFLx

0 2sinqdFLy
0 ,

~60!
FRy

0 52sinqdFLx
0 1cosqdFLy

0 .

The boundary conditions are now reduced to Eqs.~58! and ~60!. If we eliminateFLx
0 and FLy

0 in Eq. ~58!, we obtain the
relations.

A25
22qEa24

0

2K0A«L~2F211!1q~F211!1K2~F221!1eiK 2d$K0A«L~2F211!1q~F211!1K2~F221!%
, ~61!
0-9
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A25
22K0A«LEa24

0

K0A«L~F211!2q~2F211!1K2~F211!1eiK 2d$K0A«L~F211!1q~2F211!2K2~F211!%
, ~62!

respectively. Since the assumed relation, Eq.~56!, is not exact, the slightly different expressions, Eqs.~61! and ~62!, are
obtained. However, under the conditions of Eqs.~54! and ~55!, Eqs.~61! and ~62! are approximately the same, namely,
approximate solution is obtained. Using Eq.~58!, FLx

0 andFLy
0 are expressed as

FLx
0 .

A2~2F211!

&
~12eiK 2d!,

~63!

FLy
0 .2

A2i $F2~K21q!1K22q%

&K0A«L

~12eiK 2d!.

A polarization experiment for ROLIC6304 showed that the SH waves generated by (1z,r ;2z,r ) and (1z,l ;2z,l ) are
dominated byr polarization@17#. r and l components for the SH waves emanating from the right side are given by

S FRr pol
0

FRl pol
0 D 5

1

2 S 1 i

1 2 i D S FRx
0

FRy
0 D

5
A2~12eiK 2d!

2&K0A«L
S $~K0A«L1q!~F221!1K2~F211!%eiqd

$~K0A«L2q!~F221!2K2~F211!%e2 iqdD , ~64!

using Eqs.~60! and~63!. Under the conditions of Eqs.~54! and~55!, the SH wave is dominated byr polarization, which agrees
with the experiment.

The SH intensities~I! emanating froml and r sides are

I[
cA«L

8p
~ uFLx

0 u21uFLy
0 u2!5

cA«R

8p
~ uFRx

0 u21uFRy
0 u2!, ~65!

where Eqs.~53! and~60! were used to lead to the second equality. IfA2 is evaluated by Eq.~61! and Eq.~63! is used, in region
III, where SHG is outside the gap,

I 5
cA«L

8p

~2q2/K0
2«L!$~1/K0

2«L!@q1K2~F211!/~F221!#211%

@~cot2 K2d/2!/K0
2«L#@q~F211!/~F221!1K2#211

uEa24
0 u2[

cA«L

8p
GuEa24

0 u2, ~66!

where we used the fact thatK2 andF2 are real. On the other hand, in region I where SHG is inside the gap.

I 5
cA«L

8p

~2q2/K0
2«L!$~1/K0

2«L!@q1s cot~f/2!#211%

@~coth2 sd/2!/K0
2«L#@q cot~f/2!2s#211

uEa24
0 u2[

cA«L

8p
GuEa24

0 u2, ~67!
al

n

real

ted
,

ns
rved
where we used Eqs.~27! and~28! and cot(f/2) is expressed
as

cot
f

2
5

22sq

~M1L !K0
22q21s2 . ~68!

In Eqs.~66! and ~67!, uEa24
0 u2 is given by

uEa24
0 u25

16p2uPa24
0 u2

~q2/K0
22 «̃2!2 . ~69!

By substitutingK2 @Eq. ~27!# andF2 @Eq. ~28!# in Eq. ~66!,
Eq. ~67! is reproduced. So Eq.~67! is considered as a speci
form of Eq. ~66!. Conversely, by substitutings @Eq. ~27!# in
Eqs.~67! and~68!, Eq.~66! is reproduced, where the relatio
05661
F211

F221
5

2K2q

~M1L !K0
22q22K2

2 , ~70!

exists using Eqs.~A7! and ~5!. Although Eqs.~66! and ~67!
can be unified, the present forms are simple since only
variables are used. It is noted that these equations forI differ
from the conventional case, Eq.~43!.

The linear reflectance and SH spectra were calcula
near the photonic band gap~Fig. 5!. In the linear spectrum
the selective reflection band appears between thel13 andl2
edges when ar-polarized wave is incident@19,20#. Multiple
reflections of modes 2 and 4 result in subsidiary oscillatio
near the edges. Such oscillations have actually been obse
in some carefully prepared cholesteric cells@24,25#. On the
0-10
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other hand, the SH spectra in Figs. 5~b!, 5~d!, and 5~e! show
that~1! SHG is significantly enhanced only near thel2 edge,
~2! Eqs.~66! and ~67! are good approximations, and~3! the
peaks and dips in the SH spectra are located at the dips in
subsidiary oscillations in the selective reflection spectrum

Equations~66! and ~67! were factored into the form o
GuEa24

0 u2 and their spectra are shown in Fig. 5~c!. As noted
before,uEa24

0 u2 is infinite at thel2 edge, but not at thel13

FIG. 5. ~a! Linear reflection spectrum by the exact theory f
r-polarized incident wave.~b! SH spectrum for (1z,r ;2z,r ) fun-
damental waves. Except for the polarizations of the fundame
waves, the parameters are identical with those in Fig. 4. Dots, e
theory: curves, Eqs.~66! and ~67! under the approximation tha
uPa24

0 u is constant in this region, taken at K0

511.810 499 radmm21 as a typical value. Regions near thel2 edge
are enlarged in~d! and ~e!. ~c! uEa24

0 u2 andG versusK0 using Eqs.
~66!, ~67!, and~69!.
05661
he

edge. Thus, SHG is enhanced only near thel2 edge unless
l13 andl2 are nearly degenerate. In Fig. 5~c!, G is a mono-
tonic function in regionI and oscillating in region III, which
differs fromG for phase matchingA. For phase matchingA,
the maximum intensity is realized under the condition th
uEb12

0 u2 is infinite, althoughG is zero. For the present case,
similar situation occurs under the phase matching condi
K05K02, namely, at thel2 edge, whereuEa24

0 u2 is infinite
and G is zero sinceK05K025q/AL1M , K2(F211)/(F2
21)→2qM/(L1M ), q(F211)/(F221)→`, and
cot2 K2d/2→`. At the l2 edge, the infinite amplitude of the
inhomogeneous wave Eq.~48! is canceled by the infinite
homogeneous wave Eq.~29!, and the emanating SHG i
comparable to that for phase matchingA @see Figs. 4~a! and
5~b!#.

As noted above, the peaks and dips in the SH spectra
located at the dips in the selective reflection band. This re
tion is clear in Fig. 6, where the selective reflection and
spectra are shown as a function ofK2d. In the linear spectra
the dips are located at

K2d5np, ~71!

wheren are positive integers. On the other hand, in the
spectra, the peaks are located at

K2d5Np, ~72!

whereN are odd integers, while the dips are located at

K2d5N8p, ~73!

whereN8 are even integers, which shows that the locatio
of the peaks and dips are determined byG. According to a
previous paper,n (N,N8) corresponds to the number of wav
packets for the homogeneous waves in the cell@18#. When
an even number of wave packets are produced, the inho
geneous wave is canceled by the homogeneous waves a
boundary. According to Eq.~63!, the cancellation is perfec
for the conditionK2d5N8p. On the other hand, when a
odd number of wave packets are produced, the cancella
at the boundary is decreased and significant SHG eman
from the cell. These relations are shown graphically in Fi
5 and 6 in Ref.@18#. Experimentally, at present, the difficult

al
ct

FIG. 6. ~a!, ~b! Linear reflection spectrum in Fig. 5~a!, and
~c!,~d! SH spectrum in Fig. 5~b! are shown as functions ofK2d.
0-11
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in preparing high quality cells prevents the observation of
dips in ROLIC6304 and such relations between SHG a
selective reflections have not been confirmed yet.

5. Cell thickness dependence of SH intensity and width

To estimate the maximumI near thel2 edge using Eq.
~66!, we assume thatK2(F211)/(F221) in the numerator
and K2 in q(F211)/(F221)1K2 in the denominator are
negligible,

I .
cA«L

8p

3
~2q2/K0

2«L!@~q2/K0
2«L!11#

@~cot2 K2d/2!/K0
2«L#@q~F211!/~F221!#211

3uEa24
0 u2. ~74!

Moreover, we assume thatI has its maximum valueI max
under the conditionK2d5Np, namely, cot2 K2d/250. Now
we consider Eq.~74! as a function ofq andd since previous
experiments were carried out under the condition thatK0
was fixed and the pitch and thickness were varied. To
press the condition showing the maximumI in an approxi-
mate form, it is convenient to introduced. As noted previ-
ously, M for ROLIC6304 is negative andK02 is larger than
K013. To express region III near theK02 edge for negative
M, d ~.0! is defined as

q[K0AL1M2d. ~75!

For smalld, K2 can be expressed in the following series:

K25F K0
2~2L1M !22K0AL1Md1d2

2AK0
4~2L1M !228K0

3LAL1Md14K0
2Ld2 G1/2

.Ad~C01C1d1¯ !, ~76!

where

C05A4 L1MA22K0M /~2L1M !,
~77!

C15
1

2C0
H 12

2LM2

~2L1M !3J .

C0 is about 0.5 in our case. If only the first term is cons
ered,K2d5Np is expressed as

qmax5K0AL1M2
N2p2

C0
2d2 , ~78!

whereqmax is theq value that corresponds to the maximumI.
As shown in this equation,qmax converges toK0AL1M at
infinite d. Figure 7~a! confirms these expectations, whe
qmax is numerically obtained from the peak ofI versusq
using the exact theory and shown as a function of thickn
The denominator of Eq.~69! for qmax is
05661
e
d

x-

-

s.

S qmax
2

K0
2 2 «̃2D 2

5S 2
2AL1MN2p2

K0C0
2d2 1

N4p4

K0
2C0

4d4D 2

.
4~L1M !N4p4

K0
2C0

4d4 , ~79!

where we assume thatd is relatively large. Moreover, for

FIG. 7. ~a! Thickness dependence of the peak position and wi
for the SHG peaks (N51). qmax ~s! is the location of the SHG
peak and FWHM~1! is the location ofq that corresponds to the
FWHM for the SHG peak. They are numerically calculated by t
exact theory using identical parameters to those in Fig. 5~b! except
l0(v)51.064mm. The curve is drawn based on approximate E
~78!. ~b! Thickness dependence of the maximum SHG intens
(N51) calculated by the exact theory. The results are well fitted
the d4 dependence~straight line!. The locations ofq are shown in
~a!. ~c! Thickness dependence of FWHM (N51) calculated by the
exact theory. FWHM is obtained from~a!. The results are well
fitted to thed23 dependence~straight line!. The locations of the
FWHM are shown in~a!.
0-12
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suchd values,q2/(K0
2«L) terms are evaluated approximate

by using

qmax
2 .K0

2~L1M !. ~80!

Under these approximations,I max is expressed as

I max.
cA«L

8p

2«̃2

«L
S «̃2

«L
11D 4K0

2C0
4d4

«̃2p2N4 uPa24
0 u2. ~81!

Thus,I max is d4 andN24 dependent. TheN24 dependence is
roughly shown in Fig. 6~d!. The thickness dependence
I max is shown in Fig. 7~b!, which verifies thed4 dependence
This d4 dependence is the advantageous point of the spe
phase matching@7,10#. In a previous paper@10#, Yoo et al.
carried out a simulation using the analytical theory by Co
and Drevensek-Olenik@9# and showed thatI max is d4 depen-
dent. In the present paper, this characteristic is shown
lytically based on the exact theory.

For the SHG peaks as a function ofq, the full width at
half maximum~FWHM! is also thickness dependent. In E
~74!, half values ofI max are obtained when

cot2~K2d/2!

K0
2«L

S q
F211

F221D 2

.1. ~82!

Moreover, whenK2d/2 is close toNp/2,

cot2
K2d

2
.S K2d

2
2

Np

2 D 2

.S C0Add

2
2

Np

2 D 2

. ~83!

Furthermore, for smalld,

S q
F211

F221D 2

5
4K2

2q4

$~M1L !K0
22q22K2

2%2

.
28K0

5M ~L1M !5/2d/~2L1M !1¯

16K0
2~L1M !3d2/~2L1M !21¯

.
K0

4M2

C0
2d

. ~84!

Using Eqs.~83! and ~84!, two approximate solutions ford,
d1 andd2 , for Eq. ~82! satisfy

d12d25
8C0

2A«Lp2N2d

2K0M ~C0
2d224C0

2«L /K0
2M2!2 . ~85!

In the denominator of Eq.~85!, the first term is dominant ifd
is relatively large. Thus, the FWHM isd23 and N2 depen-
dent in a thick cell,

d12d2.
4A«L~2L1M !p2N2

K0
2M2AL1Md3

. ~86!

Such ad23 dependence was also noted by Belyakov a
Shipov @7#. The thickness dependence of the FWHM
shown in Fig. 7~b!, which verifies thed23 dependence. The
FWHM for the special phase matching is much narrow
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ial

c

a-

d
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than that for the conventional one@Figs. 4~a! and 5~b!#. For a
100 mm thick ROLIC6304 cell, the FWHM isDq58.82
31024 radmm21. This corresponds toDp50.018 nm when
p is varied instead ofq. For applications, the requirement o
such high stability is the problematic point of special pha
matching.

In summary, two types of phase matching condition ha
been described. Both are due to SHG using counterpropa
ing fundamental waves. The first type is for the incidence
r- and l-polarized waves. It was found that phase match
SHG occurs along the direction where ther-polarized wave
is incident. That is, the propagation direction of the pha
matched SH wave is the same as the propagation directio
the fundamentall-polarized wave. It was also found that th
phase matched SH wave isl polarized and the process
described by Fig. 3 typeA, including an umklapp process. I
the present analysis, the SH intensity in this process is
scribed by an expression@Eq. ~43!# similar to that for the
usual phase matched SH intensity, and depends on the sq
of the sample thickness,d2.

The second type of phase matching condition is for
incidence of light of the same polarization. The pha
matched SHG is very characteristic in many ways.

~1! The phase matching occurs near one of the edgesl2
edge! of a photonic gap~selective reflection band!. In the
present case~negativeM!, it is near the higher energy edg
This situation is clear in Eqs.~47! and ~50!.

~2! The exact position showing the maximum SH inte
sity corresponds to the first dip position of the subsidia
oscillation in the higher energy region of the selective refl
tion, so that the peak position shifts toward thel2 edge with
increasing cell thickness.

~3! Because of the shift, the dependence of the SH int
sity on the cell thickness is quite special, i.e.,d4. This is
explained as follows. The inhomogeneous waveEa24

0 is ex-
pressed by Eq.~47!. If we defineDK0 asK0 measured from
the edgeK02, it is readily found thatEa24

0 is proportional to
DK0 . On the other hand,DK0 is proportional toK2

2, since
the dispersion curve near zeroK2 is approximated by a para
bolic function. UsingK2d5Np, DK0 is proportional tod2.
Then finally we reach the conclusion that the maximum
intensity @proportional to (Ea24

0 )2# occurs at the first dip of
the subsidiary oscillation in the selective reflection and
pends ond4. A physically intuitive interpretation concern
the dispersion relation, since the group velocity of the S
wave becomes slow near the edge, indicating stronger n
linear interaction.

IV. CONCLUSION

The special phase matching process was analyzed.
numerical results obtained from the exact theory were
pressed in simple analytical forms. It was shown that t
counterpropagating waves in (1z,r ;2z,r ) and (1z,l ;
2z,l ) polarizations lead to special phase matching. The
lation between the selective reflection and SHG spectra
also pointed out. The maximum SH intensity occurs at
first dip on thel2 side of the selective reflection spectrum.
thick cells, the maximum SH intensity isd4 dependent, while
0-13
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the conventional phase matching isd2 dependent. However
since the FWHM isd23 dependent, extremely stable L
cells are required to realize thed4 dependence of the SH
intensity.
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APPENDIX A

Equations~3!–~6! are derived. Inabzcoordinates, Eq.~1!
is transformed to

Wa i~2]z
2I i j

0 2k0
2« i j8 !~W21! j bEb50. ~A1!

We define«ab as

«ab[Wa i~W21! j b« i j8 5Wa i~W21! j bRipRjq«pq , ~A2!

given by

«aa5«bb5$«112«21«31~«12«3!cos 2u%/4,

«ab5«ba5$2«112«22«31~«32«1!cos 2u%/4,
~A3!

«az5«za52«bz52«zb5~«12«3!sin 2u/2&,

«zz5«1 sin2 u1«3 cos2 u.

Using the relation

2Wa i]z
2I i j

0 ~W21! j b5S ~q2 i ]z!
2 0 0

0 ~q1 i ]z!
2 0

0 0 0
D ,

Eq. ~A1! is expressed as

S ~q2 i ]z!
22k0

2«aa 2k0
2«ab 2k0

2«az

2k0
2«ba ~q1 i ]z!

22k0
2«bb 2k0

2«bz

2k0
2«za 2k0

2«zb 2k0
2«zz

D S Ea

Eb

Ez

D
50, ~A4!

which is reduced to

Ez52
1

«zz
~«za «zb!S Ea

Eb
D ,

~A5!

S ~q2 i ]z!
22k0

2l 2k0
2m

2k0
2m ~q1 i ]z!

22k0
2l
D S Ea

Eb
D50,

where l and m are given by Eq.~6!. The solutions for Eq.
~A5! are given by

S Ea

Eb
D5S Ea

0

Eb
0Deikz, ~A6!
05661
.
,

which leads to

S ~k1q!22k0
2l 2k0

2m

2k0
2m ~k2q!22k0

2l
D S Ea

Eb
D50. ~A7!

Thus,k,Ea /Eb , and the general solutions are given by Eq
~4!, ~5!, and~3!, respectively.

APPENDIX B

Equations~12!–~16! are derived. Inxyz coordinates, Eq.
~11! is expressed in the same way as Eq.~1!,

~2]z
2I i j

0 2K0
2«̃ i j8 !Ej854pK0

2Pi8 , ~B1!

where the time factore2 i2vt is eliminated. «̃ i j8 , Ej8 , andPi8
are the components inxyzcoordinates. To express it inabz
coordinates, we definePa andxabg as

Pa5Wa i Pi85Wa ix i jk8 Ej8Ek8

5Wa i~W21! j b~W21!kgx i jk8 EbEg5xabgEbEg ,

~B2!

xabg5Wa i~W21! j b~W21!kgx i jk8

5Wa i~W21! j b~W21!kgRipRjqRkrxpqr , ~B3!

wherex i jk8 are the components inxyzcoordinates. xabg are
expressed as

xaaa5xaab5xaba5xbab5xbba5xbbb

5 i $x11212x2221x3321~x1122x332!cos 2u

12x132sin 2u%/4&,

xazz5xbzz52xzaz52xzbz52xzza52xzzb

5 i $2x1122x3321~x1122x332!cos 2u

12x132sin 2u%/2&, ~B4!

xabb5xbaa5 i $23x11212x22223x3321~3x332

23x112!cos 2u26x132sin 2u%/4&,

xabz5xazb5xzaa52xbaz52xbza52xzbb

5 i $22x132cos 2u1~x1122x332!sin 2u%/2,

xaaz5xaza5xbbz5xbzb5xzab5xzba5xzzz50.

In abzcoordinates, Eq.~B1! is transformed in the same wa
as Eq.~A4!.
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S ~q2 i ]z!
22K0

2«̃aa 2K0
2«̃ab 2K0

2«̃az

2K0
2«̃ba ~q1 i ]z!

22K0
2«̃bb 2K0

2«̃bz

2K0
2«̃za 2K0

2«̃zb 2K0
2«̃zz

D
3S Ea

Eb

Ez

D 54pK0
2S Pa

Pb

Pz

D , ~B5!

where «̃ab are defined as in Eq.~A3! using the dielectric
constants at 2v. Thus, the inhomogeneous wave is given
Eqs.~13!–~15!.
.

D

05661
APPENDIX C

Equations~58! and ~59! are derived. For Eq.~56!, the
homogeneous wave Eq.~17! is expressed as

P~0!A5
A2

& S ~2F211!~12eiK 2d!

i ~F211!~11eiK 2d!

2 i $F2~K21q!1K22q%~12eiK 2d!/K0

$2F2~K21q!1K22q%~11eiK 2d!/K0

D
~C1!

at z50. Thus, Eq.~58! is obtained. Also, using the relation
A2P~d!25
A2eiK 2d

& S 2 i ~F211! 2F211

2F211 i ~F211!

2$2F2~K21q!1K22q%/K0 2 i $F2~K21q!1K22q%/K0

2 i $F2~K21q!1K22q%/K0 $2F2~K21q!1K22q%/K0

D S sinqd
cosqdD , ~C2!

A4P~d!45
A4eiK 4d

& S 2 i ~F411! 2F411

2F411 i ~F411!

2$2F4~K41q!1K42q%/K0 2 i $F4~K41q!1K42q%/K0

2 i $F4~K41q!1K42q%/K0 $2F4~K41q!1K42q%/K0

D S sinqd
cosqdD ,

5
A2

& S 2 i ~F211! 2~2F211!

2~2F211! i ~F211!

2$2F2~K21q!1K22q%/K0 i $F2~K21q!1K22q%/K0

i $F2~K21q!1K22q%/K0 $2F2~K21q!1K22q%/K0

D S sinqd
cosqdD , ~C3!

P~d!A5
A2

& S 2 i ~F211!~11eiK 2d! 2~2F211!~12eiK 2d!

2~2F211!~12eiK 2d! i ~F211!~11eiK 2d!

2$2F2~K21q!1K22q%~11eiK 2d!/K0 i $F2~K21q!1K22q%~12eiK 2d!/K0

i $F2~K21q!1K22q%~12eiK 2d!/K0 $2F2~K21q!1K22q%~11eiK 2d!/K0

D S sinqd
cosqdD , ~C4!

up~d!.&Ea24
0 S 2 i 0

0 i

q/K0 0

0 2q/K0

D S sinqd
cosqdD , ~C5!

and Eq.~58!, Eq. ~59! is obtained.
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